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Abstract. Speckle is a major quality degrading factor in optical coherence tomography (OCT) images. In this work
we propose a new deep learning network for speckle reduction in retinal OCT images, termed DeSpecNet. Unlike
traditional algorithms, the model can learn from training data instead of manually selecting parameters such as noise
level. The proposed deep convolutional neural network (CNN) applies strategies including residual learning, shortcut
connection, batch normalization and leaky rectified linear units to achieve good despeckling performance. Application
of the proposed method to the OCT images shows great improvement in both visual quality and quantitative indices.
The proposed method provides good generalization ability for different types of retinal OCT images. It outperforms
state-of-the-art methods in suppressing speckles and revealing subtle features while preserving edges.
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1 Introduction

Optical coherence tomography (OCT) generates cross-sectional imaging of biological tissue in

micron resolution and has become a routine technique in diagnosis of retinal diseases. Speckles,

although contain certain information, often reduce the contrast and obscure subtle structures, and

thus impair clinical diagnosis.1 Speckles also affect the performance of automatic OCT image

analysis methods, such as retinal layer segmentation2, 3or pathological region segmentation.4, 5 To

improve the utility of OCT images both for human observation and for computer analysis, efficient

and effective speckle reduction methods are needed. The aim is to reduce the granular appearance

while preserving the fine structure of retinal tissues.
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Speckle reduction methods can be divided into two categories: hardware based and digital sig-

nal processing based methods. Hardware based methods such as angular compounding,6, 7 spatial

compounding,8, 9 frequency compounding10 aim to produce uncorrelated speckle patterns that can

be cancelled by averaging. These approaches need specially designed acquisition systems, and

cannot be directly applied to commercial OCT scanners. One temporal compounding approach

that has been successfully integrated into some commercial scanners can achieve a high quality

B-scan by averaging multiple B-scans acquired at the same location. However, the multiple ac-

quisitions largely prolong the total imaging time, and the number of such despeckled B-scans is

limited. Digital signal processing based methods are mostly post-processing methods that solely

rely on modifying the obtained OCT images. Numerous algorithms have been proposed for this

purpose. Median filter and Wiener filter are among the early attempts for OCT despckling.11 They

are easy to implement but often cause blurred edges. Partial differential equation (PDE) based

methods such as anisotropic diffusion can provide better results, but there is the problem of over-

fitting and over-smoothing. Wavelet/curvelet-based thresholding methods are widely applied.12–16

However, artifacts may appear at the edges because the image features cannot be fully represent-

ed by the fixed wavelet basis, and the thresholds are difficult to choose. Dictionary learning based

methods are therefore proposed.17–19 The atoms in the dictionary can represent the clean image and

speckles with less regular structures are removed. But the duration for learning a dictionary can

be long. Non-local means (NLM), as an effective image denoising method, was applied to OCT

despeckling.20, 21 BM3D22 which combines the idea of block matching and wavelet thresholding

was also proposed for OCT despeckling.23 These methods depending on similar image patches

may cause edge distortion because the patches are not always well matched. Statistical modelling

are often used for image denoising and also for OCT despeckling.24–26 However, as the stochastic

2

Page 2 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-108579.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



property of speckles are difficult to characterize, the proposed model may not be robust for dif-

ferent data. Recently, methods based on low rank decomposition have been proposed.27, 28 Their

performance is affected by the accuracy of the low rank + sparsity matrices model, and the decom-

position is time-costly and can only reach suboptimal results. In summary, structure-preserving

speckle reduction for OCT images remains an open problem.

Deep learning networks, especially deep convolutional neural networks (CNNs) have achieved

high performance in many computer vision tasks, and also showed potential in image denoising.

Zhang et al. proposed a convolutional neural network called DnCNN for natural image denois-

ing.29 The idea of residual learning30 is adopted, where the network learns the noise residue from

the noisy image. By subtracting the noise residue, a denoised image is obtained. Batch normal-

ization technique is further introduced to stabilize and enhance the training performance. Deep

learning methods were also proposed for despeckling in synthetic aperture radar31, 32 or ultrasound

imaging.33, 34 Wang et al.31 proposed a division residue CNN to learn the multiplicative speckle

component from the input image. In this work, we also apply residue learning and batch normal-

ization, but improve the network using the shortcut connectivity blocks and leaky rectified linear

units. Furthermore, a particular method for obtaining the training data is proposed for OCT images.

Unlike many traditional methods which require input or estimation of parameters such as noise lev-

el, the proposed network, named DeSpecNet, is able to learn the characteristics of speckles from

the training data. In experiment, it achieves good speckle reduction performance for different types

of retinal OCT images with limited number of training samples.

The rest of the paper is organized as follows. Section 2 describes the despeckling framework,

including data acquisition and preparation, the network structure, and implementation details. Sec-

tion 3 presents experimental results and comparisons with state-of-the-art denoising methods. Dis-
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cussions and conclusions are given in Section 4.

2 Method

2.1 Method overview

In this paper, we propose a deep learning based framework that works for speckle reduction in each

frame (called B-scan) from a 3D volume output by commercial OCT scanners. As speckles can be

modeled as multiplicative to the latent clean image,15, 27 the output of commercial OCT scanners,

which is in logarithmic scale, can be modeled as y = x + s, where y represents the B-scan image

with speckle, x denotes the latent clean image, and s denotes the residue corresponding to pure

speckles. In the proposed method we train the convolutional network to predict s from y. The

training and testing workflow is shown in Figure 1. Both training and testing images go through

a preprocessing procedure called flattening to make the retinal structures more aligned. In the

test stage, the output despeckled images are de-flattened to restore the original shape. To further

enhance the contrast, the intensities of the output image are linearly stretched to the full dynamic

range.

2.2 Training data acquisition and preparation

In this work ground truth denoised images for training are generated using a combination of spatial

and temporal compounding methods. Temporal compounding is achieved by averaging B-scans

from multiple OCT volumes of the same eye, and spatial compounding by averaging adjacen-

t B-scans in each volume. In order to avoid compounding low quality data (for instance due to

eye motion), B-scans are registered, and only images with sufficient structural similarity are com-

pounded.

4

Page 4 of 31AUTHOR SUBMITTED MANUSCRIPT - PMB-108579.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Fig 1 The workflow of the proposed method: (a) training stage (b) testing stage

Specifically, M repeated OCT volumes are acquired during stable fixation. One of these vol-

umes is randomly selected as the target volume and its B-scans are referred to as target B-scans.

For each target B-scan (where possible due to edge effects), select the corresponding B-scan and

the surrounding N − 1 B-scans from all volumes. These NM − 1 B-scans are then registered

and the structural similarity (SSIM) index35 calculated for each compared with the target B-scan.

The L B-scans most similar to the target B-scan are averaged to form the temporally and spatially

compounded ground truth. The flow diagram is shown in Figure 2.

In this paper, we set the parameters as M = 20, N = 7, and L = 10 so that the “ground truth”

image is balanced in regional smoothness and edge sharpness. The registration is achieved using
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Fig 2 The flow diagram of training data computing.

the imregister routine in MATLAB (Mathworks, version 2012a and later). This routine imple-

ments an intensity-based multi-resolution registration algorithm. Transform parameters are first

obtained in low resolution, and successively refined in higher resolutions. The similarity measure

is the mean square error of pixel intensities between the target image and the transformed image.

The transform parameters are optimized using the gradient descent method. In our experiments,

the affine transformation model was used. The number of resolution levels was set to three. For

gradient descent method, the maximum iteration number on each level was set as 500, and the

maximum and minimum step length were set as 0.0625 and 0.0005, respectively.

In our experiments, two types of scanners and three normal eyes, each randomly chosen from
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one subject, were involved for training data preparation. The first scanner was Topcon Atlantis

DRI-1 SS-OCT scanner (Topcon, Tokyo, Japan) with center wavelength of 1050nm. Macula-

centered OCT volumes were acquired repeatedly for one eye, each with 992×512×256 (height×

width× B-scans) voxels corresponding to 2.6×6×6 mm3. The second scanner was Topcon OCT-

2000 SD-OCT scanner (Topcon, Tokyo, Japan) with center wavelength of 840nm, and macula-

centered OCT volumes were acquired repeatedly for each of two eyes, each with 885 × 512 ×

128 (height × width × B-scans) voxels corresponding to 2.3 × 6 × 6 mm3. Different types of

OCT scanners were used to allow the network to adapt to different speckle characteristics. As the

second scanner gave less B-scans per volume, data from one more eye was needed so that the final

training data from the two scanners were balanced. For both types of data, the parameters used for

calculating the “ground truth” were the same.

Note that all OCT images used in the experiments were uncompressed raw data directly ex-

ported from the scanners. More specification of the scanners are listed in Table 1.

The bottom of the retinal pigment epithelium (RPE) layer are then detected from the clean

image volume by a 3D multi-scale graph search method.36 Using this surface as reference, both the

original and the clean B-scans in the training set are “flattened” by circularly shifting each column

so that the RPE bottom becomes a flat surface in the resulting image. This flattening procedure is

also applied to the test B-scans, so that the different pose of the retina can be compensated, and the

retinal structures in the training and testing images are better aligned. As the size of speckles is

small, at the sampling rate of commercial OCT scanners, the speckles in OCT images do not show

high spatial correlations. Moreover, the proposed network is trained to learn the pixel-to-pixel

correspondence between input and output. Therefore this change of spatial arrangements of the

pixels will not affect the performance of the model. The training pairs before and after flattening

7
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are shown in Figure 3.

Fig 3 Training image preparation results: (a) Original B-scan. (b) Clean B-scan obtained by registration and averaging.
The red curve denotes the detected RPE bottom. (c) Original B-scan after flattening. (d) Clean B-scan after flattening.

2.3 Network architecture

Four strategies are used in designing the network architecture, including residual learning, shortcut

connection, batch normalization (BN) and Leaky rectified linear units (Leaky-ReLU). As is shown

in Figure 4, the proposed DeSpecNet consists of 17 layers, in sequence: two Conv-BN-Leaky-

ReLU, three shortcut blocks each with three layers, five Conv-BN-Leaky-ReLU and in the end one

Conv. Note that, different than CNN for classification, the last layer is a convolution layer so that

the output is an image instead of a classification result. The kernel size of convolution layers is

8
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kept constant as 3× 3 with stride 1. No padding is applied for convolution, so that the feature map

size decreases throughout the layers. For all but the last layer, the channel number is 128. More

explanations are given as follows.

Fig 4 Network architecture for the proposed DeSpecNet.

2.3.1 Residual learning

Residue learning was first proposed by He et al.30 to solve the performance degradation problem

for very deep networks. As the residues are usually close to zero, the residual mapping is much

easier to learn than the original mapping which is close to identity mapping. This assumption also

holds for the case of despeckling. The proposed method formulates the whole network as a residue

learning block, which learns the speckle residue from the original B-scan. Let (xi,yi) denote the

ith training image patch pair (i = 1, · · · , N ), and R(yi; Θ) denote the predicted speckle residue

given speckled image patch y and trainable parameters Θ, The loss function of the proposed De-

SpecNet is formulated as:

l(Θ) =
1

N

N∑
i=1

‖R(yi; Θ)− (yi − xi)‖1, (1)

9
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Here the L1 instead of L2 loss is used. As the L1 loss tolerates more outliers, and edges can be

seen as outliers as opposed to smooth regions, the L1 loss is helpful to maintain edge sharpness in

the output image.

2.3.2 Shortcut connectivity block

The proposed network applies three shortcut connectivity blocks (shortcut block) to further en-

hance the feature extraction performance. As is shown in Figure 4, each shortcut block consists of

three Conv-BN-LeakyReLU connection in sequence. In each block, the input of first convolutional

layer and the output of the second Leaky ReLU are concatenated in channel dimension, as input

of the third convolutional layer. Similar to dense blocks,37 shortcut blocks allow feature reuse a-

mong adjacent layers. The shortcut connection makes the early-stage feature maps more closely

connected to the output, and thus more efficiently updated with gradients of the loss function, con-

sequently leading to more compact and more accurate models. It also helps to avoid performance

degradation or overfitting, and require fewer parameters and less computation to achieve compa-

rable performance than the traditional CNN. Therefore, it helps the proposed network to achieve

good despeckling performance with limited size of training data.

2.3.3 Batch normalization and Leaky-ReLU

Batch normalization38 was proposed to alleviate the internal covariate shift by scaling and shifting

before the nonlinearity activation. It has been widely used in classification or image generation

tasks. By reducing the statistical differences between training samples, BN has several advan-

tages, such as accelerating training, preventing gradient vanishing or explosion. It also serves as

regularization term that enhances the generalization ability of the network.

10
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Leaky-ReLU is a variant of ReLU. While ReLU can only output feature maps with positive

elements, leaky-ReLU keeps the non-linearity and preserves feature with negative number.leaky-

ReLU may benefit the training process by preventing dead neurons with zero output and zero

gradient.

2.4 Implementation details

In training, the input B-scans are cropped to 116×116 overlapping patches with stride of 50. Some

boundary regions are excluded to avoid artifacts caused by registration-averaging or flattening. The

overlapping sampling can be seen as a data augmentation method that helps to effectively utilize the

training data. A total of 90,112 sample patches were generated for training. The Adam optimizer

was used for training. The initial learning rate was 0.0001. Truncated normal initializer was used

for weight initialization. The training batch size was 26. The network was trained for 35,000 steps,

when convergence was reached. Note that in testing, no cropping was applied, and the whole

B-scan was input into the trained network. The proposed method were coded in Python based

on Tensorflow and run on a PC with Intel Xeon CPU E2-2683 v3 @ 2.00GHz with 64G RAM,

accelerated using the NVIDIA GTX Titan X GPU with 12G memory.

3 Experimental Results

3.1 Testing data

We tested our data on eleven OCT volumes obtained from four types of OCT scanners, from t-

wo different manufacturers, covering the two types of center wavelength (840nm and 1050nm).

Table 1 listed the specifications of the two groups of training data volumes and eleven test data

volumes. The testing scans were from normal or pathological eyes. The pathological eyes were
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from subjects with central serous chorioretinopathy (CSC), pathological myopia (PM), age-related

macular degeneration(AMD) or diabetic macular edema(DME). From each test OCT volume, four

B-scans, including two in the peripheral area and two close to the center, were selected for quanti-

tative evaluation. All OCT data were uncompressed and unprocessed raw data exported from the

scanners. The study was approved by the Institutional Review Board of Soochow University, and

informed consent was obtained from all subjects.

Table 1 Specifications of training and testing data

Scanner
Center
wave-

length (nm)

B-scan size
(pixels) Location

Normal/
Pathological

training 1 Topcon DRI-1 1050 512×992 macula Normal
training 2 Topcon 2000 840 512×885 macula Normal
testing 1

Topcon DRI-1 1050
512×992 macula Normal

testing 2 512×992 macula+ONH Normal
testing 3 512×992 macula Pathological(CSC)
testing 4

Topcon 1000 840
512×480 macula Normal

testing 5 512×480 macula Pathological(CSC)
testing 6

Topcon 2000 840

512×885 macula Normal
testing 7 512×885 ONH Normal
testing 8 512×885 macula Pathological(AMD)
testing 9 512×885 macula Pathological(DME)
testing 10

Zeiss Cirrus 4000 840
512×1024 macula Pathological (PM)

testing 11 512×1024 macula Pathological(CSC)

3.2 Methods for comparison

We compare the proposed method with state-of-the-art approaches for general image denoising

and for OCT despeckling, including non-local means (NLM),39, 40 block-matching and 3D filtering

(BM3D),22, 41 sparsifying transform learning and low-rank method (STROLLR),42, 43 deep CNN

with residual learning (DnCNN),29, 44 3D complex wavelet based K-SVD for OCT denoising,19, 45
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maximum-a-posteriori (MAP) estimation based on local statistical model for OCT denoising.26, 46

In these experiments, parameters for NLM and BM3D were tuned to reach a balance between

speckle removal and edge preservation, while parameters of other methods were set to default

values as in the corresponding references. For NLM, the template window size was 7, the search

window size was 21, and the filter strength was 10. For BM3D, the noise standard deviation was

set as 40.

As the network is trained to simulate spatial/temporal compounding, we implement an intra-

volume compounding method for comparison. For each B-scan, the nearest L B-scans are regis-

tered to it, and they are averaged to get the despeckling result. The number of averaged B-scans

and the registration method are exactly the same as in training data computation.

We also compare the results with three variations of the network. The first model uses L2 loss

instead of L1 loss. The second model replaces each shortcut block with a residue block, which

means simply replacing the concatenation inside the block with summation. The third model uses

ReLU instead of Leaky ReLU.

For fair comparison, all resulting images are enhanced by linear intensity mapping to the full

dynamic range.

3.3 Qualitative Evaluation

The despeckling results for B-scans from the eleven testing volumes are shown in Figure 5. It can

be seen that the proposed method performs well for all cases, removing the speckles in different

regions while preserving the edges and structure details. Both the retina layers and the choroid

vessels are visually enhanced.

Despeckling results for two B-scans are further shown in Figure 6 and 7, compared with
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results by other methods. It can be seen that the block matching methods, NLM and BM3D, both

result in artifacts inside the retinal layers and blurred boundaries between layers. STROLLER

gives better appearance inside the retinal layers, but has distortion near strong edges. K-SVD gives

oversmoothed results for testing data 1. It works better for testing data 7, but the edges are also

blurred. The MAP method does insufficient smoothing for both cases. The results by intra-volume

compounding method still have speckles left inside layers, and edges can be blurred, especially

when the retinal structure have big changes across adjacent B-scans, such as in testing data 7. In

general, the CNN-based methods work much better than the other methods. All the five methods

are able to recover the entire external limiting membrane, a thin structure above the RPE complex

with high intensity, which is barely discernible in the original image. However, for DnCNN, there

are sometimes overshooting artifacts near strong edges, such as the black shadows in the concave

part shown in Figure 7(h). Using L2 loss, the results are slightly blurred than those of the proposed

method. For the method with res-blocks, there are sometimes dot-like artifacts in both background

and retinal regions, such as shown in Figure 6(h). For the method with ReLU, the resulting retinal

regions are less smoothed than the proposed method with Leaky ReLU.

3.4 Quantitative Evaluation

In this section, four performance indices are used to quantitatively compare the performance of

different denoising algorithms for the test images, including signal-to-noise ratio (SNR), contrast-

to-noise ratio (CNR), equivalent number of looks (ENL) and edge preservation index (EPI). For

calculating the indices, a background region of interest (ROI) , three signal ROIs and three retinal

boundaries are manually selected, as shown in Figure 5. The background ROI (in green) is a

rectangular region randomly selected above the retina. Three signal ROIs (in red) are located
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in the retinal neural fiber layer (RNFL), inner retina, and the retinal pigment epithelium (RPE)

complex, respectively. Three boundaries (in blue) are the upper boundary of RNFL, inner-outer

retina boundary and the lower boundary of RPE.

The indices are calculated as follows:

SNR = 10log10

(
max (I)2

σ2
b

)
, (2)

CNRi = 10log10

(
|µi − µb|√
σ2
i + σ2

b

)
, (3)

ENLi =
µ2
i

σ2
i

, (4)

where max(I) is the maximum pixel intensity of the B-scan I , µb and σb denote the mean and

standard deviation of the background region, and µi and σi denote the mean and standard deviation

of i-th signal region. By definition, SNR measures the homogeneity of the background, CNR

reflects both the contrast between foreground and background, and the homogeneity of both areas,

and ENL represents the signal strength and homogeneity of foreground regions. In our experiment,

mean CNR and ENL are calculated over the three signal regions.

EPI =

∑
i

∑
j |Id (i+ 1, j)− Id (i, j)|∑

i

∑
j |Io (i+ 1, j)− Io (i, j)|

(5)

where Io and Id represent the original image and the despeckled image, while i and j represent co-

ordinates in the vertical and horizontal direction in the image. EPI is a measure of edge sharpness,

but it can be also high in areas of strong noise. With the layered retinal structure, the vertical gra-
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dients are much larger than the horizontal ones. Therefore only vertical gradients are considered

in calculating EPI. To focus on the edges, the EPIs are calculated in the neighborhoods of the three

manually delineated boundaries.

The mean and standard deviation of performance indices for different methods, calculated over

the 44 test B-scans, are listed in Table 2. NLM has high SNR, indicating that it performs well

in background denoising, but the low CNR and ENL show that it doesn’t work well in retinal

regions. The high EPI may be result of artifacts near boundaries. BM3D is low in SNR, with

poor performance in background. STROLLR is quite balanced in all indices, but the CNR, ENL

and EPI are all lower than the proposed DeSpecNet. K-SVD has very high SNR, CNR and ENL,

but low EPI, which can be associated with the oversmoothed results. MAP is low in all indices,

especially SNR and EPI. The intra-volume compounding gives low SNR and CNR. In general,

the CNN-based methods obtain high performance indices. Compared with DnCNN, the proposed

DespecNet with shortcut block and leaky ReLU is higher in CNR, ENL and EPI. Using L1 instead

of L2 loss, the proposed method is higher in SNR, CNR, and EPI, but lower in ENL. This indicates

that the L2 loss results in more smoothed retinal regions but also blurs the edges. By using shortcut

block instead of res-block, the SNR is improved while CNR and ENL decreases a bit. By using

leaky ReLU instead of ReLU, the SNR, CNR, and ENL are increased. It can be concluded that the

proposed DeSpecNet has the best overall performance regarding the quantitative indices.

3.5 Computational time

The computational time of all deep learning based methods are listed in Table. 3. For all networks,

training is finished until the loss converges. The testing time for each B-scan is the average for

2000 B-scans with size 992× 512. As DnCNN has the most simple structure, it requires the short-
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Table 2 Comparison of performance indices.

SNR CNR ENL EPI

Original 26.16±1.27 4.32±1.07 34.10±12.86 1.00±0.00
NLM 44.02±3.04 5.82±1.67 58.63±43.55 1.06±0.10

BM3D 34.57±1.76 8.18±0.96 102.66±48.75 0.80±0.11
STROLLR 41.65±2.05 8.03±1.56 114.95±98.18 0.79±0.10

K-SVD 49.69±2.18 8.93±2.04 223.70±320.53 0.78±0.13
MAP 31.22±1.33 7.00±1.48 119.49±56.08 0.76±0.09

Intra-volume Compounding 33.24±2.03 8.45±1.16 107.12±45.83 0.90±0.12
DnCNN 40.72±2.58 9.47±1.36 154.17±83.84 0.81±0.11

Shortcut block + Leaky ReLU + L2 loss 39.27±4.58 9.31±1.66 186.92±116.67 0.83±0.08
Res-block + Leaky ReLU + L1 loss 38.42±3.37 9.73±1.68 173.98±111.22 0.91±0.09
Shortcut block + ReLU + L1 loss 39.37±4.06 9.16±1.60 124.02±66.09 0.91±0.09

DeSpecNet
(Shortcut block + Leaky ReLU + L1 loss) 40.17±6.00 9.67±1.72 166.23±97.52 0.91±0.09

est training and testing time. The four model variations including the proposed DeSpecNet take

longer time to converge. However, as the training is done off-line, the several hour training time

is acceptable. For testing, the proposed network takes slightly longer than the other model varia-

tions. Other methods compared requires no off-line training. With the current implementation (in

MATLAB or mixed MATLAB/C), their testing time ranges from seconds to minutes. We don’t list

their time cost in detail here because it is unfair to compare the time cost of methods with different

software platforms, especially when all deep learning methods use GPU for acceleration. Still, by

the nature of deep learning, the proposed method is easily accelerated by parallel computation, and

the testing time can reach the real-time requirement of clinical applications.

4 Discussion and Conclusions

In this paper, we propose a deep learning network for speckle reduction in OCT B-scans. Residue

learning is adopted to make the model more stable and easier to optimize. Compared with DnC-
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Table 3 Comparison of computational time.

Method Training (min) Testing(s)
DnCNN 141 0.11

Shortcut block + Leaky ReLU + L2 loss 300 0.36
Res-block + Leaky ReLU + L1 loss 385 0.35
Shortcut block + ReLU + L1 loss 306 0.34

DeSpecNet
(Shortcut block + Leaky ReLU + L1 loss ) 356 0.38

NN29 which is mainly based on Conv-BN-ReLU modules, the proposed DeSpecNet has the same

depth, but is improved with shortcut connectivity blocks, leaky ReLU and L1 loss function, and the

number of channels are doubled. Experimental results show that the proposed method outperforms

DnCNN. The advantages of using L1 loss instead of L2 loss, using concatenation for the shortcut

connection instead of summation as in residue blocks, and using leaky ReLU instead of ReLU,

are also demonstrated experimentally. The better visual quality and performance indices indicate

better feature extraction and representation ability of the proposed network.

The proposed method also well outperforms other state-of-the-art methods for image denoising

or OCT despeckling. It appears that many methods designed for natural images, such as NLM,39

BM3D22 and STROLLR42 do not work well with OCT images. The poor performance may be

caused by the difficulty of finding matching blocks or learning the underlying models with the

complexity and dominance of OCT speckles. Methods designed for OCT images, such as K-

SVD19 and MAP26 may work for certain types of OCT images as reported, but the generalization

ability is poor. By contrast, the proposed method achieves good despeckling results for all types of

OCT images tested, including images taken at different retina locations, with different resolutions,

and both normal and pathological cases.

It is also showed that the proposed method outperforms the intra-volume compounding method.
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Learning from the results of multi-volume spatial/temporal compounding, the proposed method of-

fers a way to simulate the despeckling effect offered by temporal compounding. Although it cannot

reach the performance of real temporal compounding by repeated scanning, it has the advantage

of software-based methods as discussed in Introduction.

Additionally, the means for obtaining “clean” images as ground truth and the patch-based over-

lapping sampling strategy in training are specifically designed for OCT images. The registration-

averaging method for obtaining training data only depends on the output of commercial scanners

and a number of normal eyes as subjects, and good performance is obtained by limited number of

samples. Based on patch-based training, the model can automatically select representative features

that helps to decrease training loss, providing generalization ability for different types of OCT

images.

In this work, we use three eyes for computing the training data and show that, even with such

a limited number of training subjects, the model works for a variety of test images. Three is the

minimum requirement to balance the data of two optical systems with different center wavelength.

If more volunteers are available, we can scan the same number of subjects with both scanners, and

discard half of the B-scans from the first scanner. In this way both the number of subjects and

the number of B-scans are balanced between the two scanners. By including more subjects for

training, the generalization ability of the network can be surely improved.

Besides, we only use normal eyes for training, because the registration-average method do not

work well for images from pathological eyes. First, it’s difficult for patients to maintain stable

fixation during multiple acquisitions, leading to big differences between volumes. Then, patholo-

gies often cause drastic change in structure between adjacent B-scans. Furthermore, images from

pathological eyes are often with lower quality. All these factors can make registration difficult
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and high quality training set hard to obtain. In the future, we will investigate advanced registra-

tion methods or other alternative ways to obtain speckled/clean image pairs for pathological eyes.

Inclusion of these data in training will probably improve the performance of the model.

In summary, by applying the proposed DeSpecNet, the quality of OCT B-scans are improved

effectively, with speckles suppressed, edges preserved and contrast enhanced simultaneously. It is

promising that this preprocessing can help with manual inspection of the OCT as well as improving

the performance of following automatic OCT analysis methods. Furthermore, accelerated by GPU,

the computational time can readily meet the real-time demand of clinical practice. In the future, we

will further exploit the improvement of the method by incorporating fuzzy metrics, sparse coding

and hybrid domain processing into the proposed strategy.47–52 We will also further investigate

the contribution of the proposed OCT despeckling method to specific applications, such as manual

diagnosis of certain retinal pathologies, and automatic segmentation of retinal structures or lesions.
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Fig 5 Despeckling results for the B-scans from the eleven testing volumes. (Some are scaled for display purpose)
(a)-(k) corresponds to testing data 1-11, respectively. For each panel, left: original B-scan, right: despeckled B-scan.
In each original B-scan, the green rectangle represents the background ROI, the red rectangles represents the signal
ROIs, and the blue curves represent boundaries for calculating EPI.
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Fig 6 Results for one B-scan of testing data 1. Part of the background are cropped. The regions in red rectangle are
zoomed. (a)Original image (b) NLM(c) BM3D (d) STROLLR (e) K-SVD (f) MAP (g) Intra-volume compounding
(h) DnCNN (i) Shortcut block + Leaky ReLU + L2 loss (j) Res-block + Leaky ReLU + L1 loss (k) Shortcut block +
ReLU + L1 loss (l) Proposed DeSpecNet(Shortcut block + Leaky ReLU + L1 loss)
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Fig 7 Results for one B-scan of testing data 7. Part of the background are cropped. The regions in red rectangle are
zoomed. (a)Original image (b) NLM(c) BM3D (d) STROLLR (e) K-SVD (f) MAP (g) Intra-volume compounding
(h) DnCNN (i) Shortcut block + Leaky ReLU + L2 loss (j) Res-block + Leaky ReLU + L1 loss (k) Shortcut block +
ReLU + L1 loss (l) Proposed DeSpecNet(Shortcut block + Leaky ReLU + L1 loss)
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